Best Practices for Build and Release Management Part 2

Ok, as promised in Part 1, I’ll go into a bit more detail about each of the areas outlined previously, starting with…

The Build Process

This area, perhaps more than any other area I’ll be covering in this section, has benefited most from the introduction of some ultra handy tools. Back in the day, building/compiling software was fairly manual, and could only be automated to a certain degree, make files and batch systems were about as good as it got, and even that relied on a LOT of planning and could quite often be a nightmare to manage.

These days though, the build phase is exceedingly well catered for and is now a very simple process, and what’s more, we can now get an awful lot more value out of this single area.

As I mentioned before, one of the aims of release management is to make software builds simple, quick and reliable. Tools such as Ant, Nant (.Net version of Ant), Maven, Rake and MSBuild help us on our path towards our goal in many ways. Ant, MSBuild and Nant are very simple XML based scripting languages which offer a wide ranging level of control – for instance, you can build entire solutions with a single line of script, or you can individually compile each project and specify each dependency – it’s up to you to decide what level of control you need. I believe that build scripts should be kept simple and easy to manage, so when dealing with NAnt and MSBuild for .Net solutions I like to build each project by calling an .proj file rather than specifically compiling each library. The .proj files should be constructed correctly and stored in source control. Each build should get the latest proj file  (and the rest of the code, including shared libraries – more on that later) and compile the project.

For Java projects. Ant and Maven are the most popular tools. Ant, like Nant, gives the user a great deal of control, while Maven has less inherent flexibility and enforces users to adhere to its processes. However, both are equally good at helping us make our build simple, quick and reliable. Maven uses POM files to control how projects are built. Within these POM files a build engineer will define all the goals needed to compile the project. This might sound a little tedious but the situation is made easier by the fact that POM files can inherit from master/parent POM files, reducing the amount of repetition and keeping your project build files smaller, cleaner and easier to manage. I would always recommend storing as much as possible in parent POM files, and as little as you can get away with in the project POMs.

One of the great improvements in software building in recent years has been the introduction of Continuous Integration. The most popular CI tools around are CruiseControl, CruiseControl.Net, Hudson and Bamboo. In their simplest forms, CI tools are basically just schedulers, and they essentially just kick off your build tools. However, that’s just the tip of the iceberg, because these tools can do much, MUCH more than that – I’ll explain more later, but for now I’ll just say that they allow us to do our builds automatically, without the need for any human intervention. CI tools make it very easy for us to setup listeners to poll our source code repositories for any changes, and then automatically kick off a build, and then send us an email to let us know how the build went. It’s very simple stuff indeed.

So let’s take a look at what we’ve done with our build process so far:

  • We’ve moved away from manually building projects and started using simple build scripts, making the build process less onerous and not so open to human error. Reliability is on the up!
  • We’ve made our build scripts as simple as possible – no more 1000 line batch files for us! Our troubleshooting time has been significantly reduced.
  • We’ve moved away from using development UIs to make our builds – our builds are now more streamlined and faster.
  • We’ve introduced a Continuous Integration system to trigger our builds whenever a piece of code is committed – our builds are now automated.

So in summary, we’ve implemented some really simple steps and already our first goal is achieved – we’ve now got simple, quick and reliable builds. Time for a cup of tea!

Best Practices for Build and Release Management Part 1

Firstly, Release Management has been around for long enough for it to no longer mean what it used to mean. Release Management used to be concentrated on the discipline of “creating a release of software”, that generally involved the following key points:

  • How to create or build a reliable “release”
  • How to get that reliable release out into the wild

The sorts of issues that these key points in turn raised were things like:

  • How to reliably and repeatably “build” (compile) software
  • How to make software builds quicker
  • How to make software builds easier
  • How to package software builds (zips, .msi etc)

We used to spend our time working with make files, batch files and countless checklists, running manual builds, and then we’d painstakingly create installers or configure zip files to deploy our releases. And when things went wrong, they usually went seriously wrong, and repeating the build and release process could take days.

Since those bad old days, Release Management has come a long way. Lots of the old issues have been addressed by some exceedingly neat tools which have placed emphasis on automation and quality (I’m thinking Ant/Nant, Cruise Control, the Continuous Integration process, Hudson and loads more). But one other major thing has happened in the world of Release Management, and that’s ITIL.

ITIL has redefined the practice of Release Management as more of a planning and coordinating role, it even goes so far as to say Release Management involves communicating with customers and managing customer expectation. This is a million miles away from writing complex batch files, hundreds of lines long, to compile and deploy software to a QA environment! In an ITIL world, the issues listed earlier either don’t exist, or have been addressed already and are no longer a concern to a Release Manager.

So why does the ITIL version of Release Management differ so much from the real world job of a Release Manager?

Well, I would guess that the “build management” aspect is simply not considered part of release management, and that it should be covered somewhere else, but that’s just my guess, I’m seeking some advice from ITIL about that right now.

What we’re left with now is a world where “Release Management” means one thing to one person, and something completely different to another. I’m from the old school of Release Management, I like to actually produce stuff. In a second I’ll outline what I consider to be the main roles and objectives of Release Management, and then later I’ll take each one and explain some ways that I’ve used for tackling them.

So, I like to think of Release Management as a practice which:

  • Helps make software builds simple, quick and reliable. This is achieved by employing the best tools for the job. This means understanding all the various build tools, seeing how they integrate with the systems that already exist in the workplace, and making an informed choice. There’s no way you’re going to make software builds easier, more reliable and repeatable by implementing a manual solution, so get to grips with the various build tools out there and make them work for you.
  • Helps make software deployments simple, quick, reliable and repeatable. Again, this is a bit like the above, but there are fewer tools to choose from. Manually deploying releases is painful and risky, and it also belongs in the dark ages and should be outlawed. There are still plenty of options and combinations of tools to make this task fully automated.
  • Helps take care of configuration management. When I say configuration management, I’m talking about all those issues with how to make a software release look, feel and behave the same from one environment to the next. For me this falls into Release Management because Release Management, unlike development, QA or Operations, has a direct involvement in every environment along the way to releasing into the wild. It’s pointless asking the development team to tackle the issues of configurations between environments when they have very little or no visibility of the production environment, and besides, their time would be much better spent making that button look cooler because that’s what the business has asked for!
  • Helps drive software quality. Thanks to the Continuous Integration process, and the tools that have been built around it, it’s now possible for us to build software every single time a piece of code is checked in, run a suite of unit tests, analyse the code for lazy programming and report on the amount of test coverage a project has. And that’s just the start. There are tools out there for doing much much more than this, and I’ll go into more detail about this later.
  • Helps optimise development and QA time. By giving the dev team the feedback on the quality of their code and telling them where they’re going right and going wrong, we’re helping them target their efforts. Furthermore, if were busy providing these solutions for them, doing the builds, configurations and releases, the developers can get busy doing the stuff they’re skilled at doing. For the QA team, we’re finding bugs and failing releases before the releases even get to them! (of course, if we find too many bugs and fail a release, that release won’t even get o QA)
  • Speeds up time to market. Ok, so we’ve made builds quicker, easier and more reliable, we’ve sped up the process of fine tuning code quality, we’ve spotted bugs before a round of QA has even begun and we’ve made the process of releasing our software out into the wild quicker and simpler. Basically we’ve saved a heap of time in dev, QA and Operations and so our new, higher quality software, can be released efficiently into the wild. Happy days!

As promised earlier, I’ll spend a while giving a few examples of how to actually implement what I’ve broadly outlined above. I’ll try to be generic where I can, but I’ll include specifics for some examples. All that and more in Part 2!